'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(f(f(X))) -> mark(c(f(g(f(X)))))
     , active(c(X)) -> mark(d(X))
     , active(h(X)) -> mark(c(d(X)))
     , active(f(X)) -> f(active(X))
     , active(h(X)) -> h(active(X))
     , f(mark(X)) -> mark(f(X))
     , h(mark(X)) -> mark(h(X))
     , proper(f(X)) -> f(proper(X))
     , proper(c(X)) -> c(proper(X))
     , proper(g(X)) -> g(proper(X))
     , proper(d(X)) -> d(proper(X))
     , proper(h(X)) -> h(proper(X))
     , f(ok(X)) -> ok(f(X))
     , c(ok(X)) -> ok(c(X))
     , g(ok(X)) -> ok(g(X))
     , d(ok(X)) -> ok(d(X))
     , h(ok(X)) -> ok(h(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))
    , active^#(c(X)) -> c_1(d^#(X))
    , active^#(h(X)) -> c_2(c^#(d(X)))
    , active^#(f(X)) -> c_3(f^#(active(X)))
    , active^#(h(X)) -> c_4(h^#(active(X)))
    , f^#(mark(X)) -> c_5(f^#(X))
    , h^#(mark(X)) -> c_6(h^#(X))
    , proper^#(f(X)) -> c_7(f^#(proper(X)))
    , proper^#(c(X)) -> c_8(c^#(proper(X)))
    , proper^#(g(X)) -> c_9(g^#(proper(X)))
    , proper^#(d(X)) -> c_10(d^#(proper(X)))
    , proper^#(h(X)) -> c_11(h^#(proper(X)))
    , f^#(ok(X)) -> c_12(f^#(X))
    , c^#(ok(X)) -> c_13(c^#(X))
    , g^#(ok(X)) -> c_14(g^#(X))
    , d^#(ok(X)) -> c_15(d^#(X))
    , h^#(ok(X)) -> c_16(h^#(X))
    , top^#(mark(X)) -> c_17(top^#(proper(X)))
    , top^#(ok(X)) -> c_18(top^#(active(X)))}
  
  The usable rules are:
   {  active(f(f(X))) -> mark(c(f(g(f(X)))))
    , active(c(X)) -> mark(d(X))
    , active(h(X)) -> mark(c(d(X)))
    , active(f(X)) -> f(active(X))
    , active(h(X)) -> h(active(X))
    , f(mark(X)) -> mark(f(X))
    , proper(f(X)) -> f(proper(X))
    , proper(c(X)) -> c(proper(X))
    , proper(g(X)) -> g(proper(X))
    , proper(d(X)) -> d(proper(X))
    , proper(h(X)) -> h(proper(X))
    , f(ok(X)) -> ok(f(X))
    , g(ok(X)) -> ok(g(X))
    , d(ok(X)) -> ok(d(X))
    , h(mark(X)) -> mark(h(X))
    , c(ok(X)) -> ok(c(X))
    , h(ok(X)) -> ok(h(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
     ==> {c^#(ok(X)) -> c_13(c^#(X))}
   {active^#(c(X)) -> c_1(d^#(X))}
     ==> {d^#(ok(X)) -> c_15(d^#(X))}
   {active^#(h(X)) -> c_2(c^#(d(X)))}
     ==> {c^#(ok(X)) -> c_13(c^#(X))}
   {active^#(f(X)) -> c_3(f^#(active(X)))}
     ==> {f^#(ok(X)) -> c_12(f^#(X))}
   {active^#(f(X)) -> c_3(f^#(active(X)))}
     ==> {f^#(mark(X)) -> c_5(f^#(X))}
   {active^#(h(X)) -> c_4(h^#(active(X)))}
     ==> {h^#(ok(X)) -> c_16(h^#(X))}
   {active^#(h(X)) -> c_4(h^#(active(X)))}
     ==> {h^#(mark(X)) -> c_6(h^#(X))}
   {f^#(mark(X)) -> c_5(f^#(X))}
     ==> {f^#(ok(X)) -> c_12(f^#(X))}
   {f^#(mark(X)) -> c_5(f^#(X))}
     ==> {f^#(mark(X)) -> c_5(f^#(X))}
   {h^#(mark(X)) -> c_6(h^#(X))}
     ==> {h^#(ok(X)) -> c_16(h^#(X))}
   {h^#(mark(X)) -> c_6(h^#(X))}
     ==> {h^#(mark(X)) -> c_6(h^#(X))}
   {proper^#(f(X)) -> c_7(f^#(proper(X)))}
     ==> {f^#(ok(X)) -> c_12(f^#(X))}
   {proper^#(f(X)) -> c_7(f^#(proper(X)))}
     ==> {f^#(mark(X)) -> c_5(f^#(X))}
   {proper^#(c(X)) -> c_8(c^#(proper(X)))}
     ==> {c^#(ok(X)) -> c_13(c^#(X))}
   {proper^#(g(X)) -> c_9(g^#(proper(X)))}
     ==> {g^#(ok(X)) -> c_14(g^#(X))}
   {proper^#(d(X)) -> c_10(d^#(proper(X)))}
     ==> {d^#(ok(X)) -> c_15(d^#(X))}
   {proper^#(h(X)) -> c_11(h^#(proper(X)))}
     ==> {h^#(ok(X)) -> c_16(h^#(X))}
   {proper^#(h(X)) -> c_11(h^#(proper(X)))}
     ==> {h^#(mark(X)) -> c_6(h^#(X))}
   {f^#(ok(X)) -> c_12(f^#(X))}
     ==> {f^#(ok(X)) -> c_12(f^#(X))}
   {f^#(ok(X)) -> c_12(f^#(X))}
     ==> {f^#(mark(X)) -> c_5(f^#(X))}
   {c^#(ok(X)) -> c_13(c^#(X))}
     ==> {c^#(ok(X)) -> c_13(c^#(X))}
   {g^#(ok(X)) -> c_14(g^#(X))}
     ==> {g^#(ok(X)) -> c_14(g^#(X))}
   {d^#(ok(X)) -> c_15(d^#(X))}
     ==> {d^#(ok(X)) -> c_15(d^#(X))}
   {h^#(ok(X)) -> c_16(h^#(X))}
     ==> {h^#(ok(X)) -> c_16(h^#(X))}
   {h^#(ok(X)) -> c_16(h^#(X))}
     ==> {h^#(mark(X)) -> c_6(h^#(X))}
   {top^#(mark(X)) -> c_17(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_18(top^#(active(X)))}
   {top^#(mark(X)) -> c_17(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_17(top^#(proper(X)))}
   {top^#(ok(X)) -> c_18(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_18(top^#(active(X)))}
   {top^#(ok(X)) -> c_18(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_17(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  active^#(f(X)) -> c_3(f^#(active(X)))
       , f^#(ok(X)) -> c_12(f^#(X))
       , f^#(mark(X)) -> c_5(f^#(X))}
      
      The usable rules for this path are the following:
      {  active(f(f(X))) -> mark(c(f(g(f(X)))))
       , active(c(X)) -> mark(d(X))
       , active(h(X)) -> mark(c(d(X)))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , active^#(f(X)) -> c_3(f^#(active(X)))
               , f^#(ok(X)) -> c_12(f^#(X))
               , f^#(mark(X)) -> c_5(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_5(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_5(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_3(f^#(active(X)))}
            and weakly orienting the rules
            {f^#(mark(X)) -> c_5(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_3(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_12(f^#(X))}
            and weakly orienting the rules
            {  active^#(f(X)) -> c_3(f^#(active(X)))
             , f^#(mark(X)) -> c_5(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_12(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [13]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [2]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(h(X)) -> mark(c(d(X)))}
            and weakly orienting the rules
            {  f^#(ok(X)) -> c_12(f^#(X))
             , active^#(f(X)) -> c_3(f^#(active(X)))
             , f^#(mark(X)) -> c_5(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(h(X)) -> mark(c(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(f(X))) -> mark(c(f(g(f(X)))))
             , active(c(X)) -> mark(d(X))}
            and weakly orienting the rules
            {  active(h(X)) -> mark(c(d(X)))
             , f^#(ok(X)) -> c_12(f^#(X))
             , active^#(f(X)) -> c_3(f^#(active(X)))
             , f^#(mark(X)) -> c_5(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                 , active(c(X)) -> mark(d(X))
                 , active(h(X)) -> mark(c(d(X)))
                 , f^#(ok(X)) -> c_12(f^#(X))
                 , active^#(f(X)) -> c_3(f^#(active(X)))
                 , f^#(mark(X)) -> c_5(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                   , active(c(X)) -> mark(d(X))
                   , active(h(X)) -> mark(c(d(X)))
                   , f^#(ok(X)) -> c_12(f^#(X))
                   , active^#(f(X)) -> c_3(f^#(active(X)))
                   , f^#(mark(X)) -> c_5(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , f^#_0(3) -> 18
                 , f^#_0(9) -> 18
                 , c_5_0(18) -> 18
                 , c_12_0(18) -> 18}
      
   2) {  active^#(h(X)) -> c_4(h^#(active(X)))
       , h^#(ok(X)) -> c_16(h^#(X))
       , h^#(mark(X)) -> c_6(h^#(X))}
      
      The usable rules for this path are the following:
      {  active(f(f(X))) -> mark(c(f(g(f(X)))))
       , active(c(X)) -> mark(d(X))
       , active(h(X)) -> mark(c(d(X)))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , active^#(h(X)) -> c_4(h^#(active(X)))
               , h^#(ok(X)) -> c_16(h^#(X))
               , h^#(mark(X)) -> c_6(h^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {h^#(mark(X)) -> c_6(h^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(mark(X)) -> c_6(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  h^#(x1) = [1] x1 + [3]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(h(X)) -> c_4(h^#(active(X)))}
            and weakly orienting the rules
            {h^#(mark(X)) -> c_6(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(h(X)) -> c_4(h^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(ok(X)) -> c_16(h^#(X))}
            and weakly orienting the rules
            {  active^#(h(X)) -> c_4(h^#(active(X)))
             , h^#(mark(X)) -> c_6(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(ok(X)) -> c_16(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [2]
                  h^#(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(h(X)) -> mark(c(d(X)))}
            and weakly orienting the rules
            {  h^#(ok(X)) -> c_16(h^#(X))
             , active^#(h(X)) -> c_4(h^#(active(X)))
             , h^#(mark(X)) -> c_6(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(h(X)) -> mark(c(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  h^#(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(f(X))) -> mark(c(f(g(f(X)))))
             , active(c(X)) -> mark(d(X))}
            and weakly orienting the rules
            {  active(h(X)) -> mark(c(d(X)))
             , h^#(ok(X)) -> c_16(h^#(X))
             , active^#(h(X)) -> c_4(h^#(active(X)))
             , h^#(mark(X)) -> c_6(h^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  h^#(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                 , active(c(X)) -> mark(d(X))
                 , active(h(X)) -> mark(c(d(X)))
                 , h^#(ok(X)) -> c_16(h^#(X))
                 , active^#(h(X)) -> c_4(h^#(active(X)))
                 , h^#(mark(X)) -> c_6(h^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                   , active(c(X)) -> mark(d(X))
                   , active(h(X)) -> mark(c(d(X)))
                   , h^#(ok(X)) -> c_16(h^#(X))
                   , active^#(h(X)) -> c_4(h^#(active(X)))
                   , h^#(mark(X)) -> c_6(h^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , h^#_0(2) -> 1
                 , c_6_0(1) -> 1
                 , c_16_0(1) -> 1}
      
   3) {  top^#(mark(X)) -> c_17(top^#(proper(X)))
       , top^#(ok(X)) -> c_18(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(f(X))) -> mark(c(f(g(f(X)))))
       , active(c(X)) -> mark(d(X))
       , active(h(X)) -> mark(c(d(X)))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , top^#(mark(X)) -> c_17(top^#(proper(X)))
               , top^#(ok(X)) -> c_18(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {top^#(ok(X)) -> c_18(top^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(ok(X)) -> c_18(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [14]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [1] x1 + [2]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(f(X))) -> mark(c(f(g(f(X)))))
             , active(c(X)) -> mark(d(X))
             , active(h(X)) -> mark(c(d(X)))}
            and weakly orienting the rules
            {top^#(ok(X)) -> c_18(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_17(x1) = [1] x1 + [2]
                  c_18(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(mark(X)) -> c_17(top^#(proper(X)))}
            and weakly orienting the rules
            {  active(f(f(X))) -> mark(c(f(g(f(X)))))
             , active(c(X)) -> mark(d(X))
             , active(h(X)) -> mark(c(d(X)))
             , top^#(ok(X)) -> c_18(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(mark(X)) -> c_17(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [4]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [3]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  top^#(mark(X)) -> c_17(top^#(proper(X)))
                 , active(f(f(X))) -> mark(c(f(g(f(X)))))
                 , active(c(X)) -> mark(d(X))
                 , active(h(X)) -> mark(c(d(X)))
                 , top^#(ok(X)) -> c_18(top^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  top^#(mark(X)) -> c_17(top^#(proper(X)))
                   , active(f(f(X))) -> mark(c(f(g(f(X)))))
                   , active(c(X)) -> mark(d(X))
                   , active(h(X)) -> mark(c(d(X)))
                   , top^#(ok(X)) -> c_18(top^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  active_0(3) -> 39
                 , active_0(9) -> 39
                 , mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , proper_0(3) -> 37
                 , proper_0(9) -> 37
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , top^#_0(3) -> 35
                 , top^#_0(9) -> 35
                 , top^#_0(37) -> 36
                 , top^#_0(39) -> 38
                 , c_17_0(36) -> 35
                 , c_18_0(38) -> 35}
      
   4) {  proper^#(h(X)) -> c_11(h^#(proper(X)))
       , h^#(ok(X)) -> c_16(h^#(X))
       , h^#(mark(X)) -> c_6(h^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(h(X)) -> c_11(h^#(proper(X)))
               , h^#(ok(X)) -> c_16(h^#(X))
               , h^#(mark(X)) -> c_6(h^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(h(X)) -> c_11(h^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(h(X)) -> c_11(h^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [8]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [2]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(ok(X)) -> c_16(h^#(X))}
            and weakly orienting the rules
            {proper^#(h(X)) -> c_11(h^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(ok(X)) -> c_16(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [4]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [9]
                  proper^#(x1) = [1] x1 + [13]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {h^#(mark(X)) -> c_6(h^#(X))}
            and weakly orienting the rules
            {  h^#(ok(X)) -> c_16(h^#(X))
             , proper^#(h(X)) -> c_11(h^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {h^#(mark(X)) -> c_6(h^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [8]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [4]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  h^#(mark(X)) -> c_6(h^#(X))
                 , h^#(ok(X)) -> c_16(h^#(X))
                 , proper^#(h(X)) -> c_11(h^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  h^#(mark(X)) -> c_6(h^#(X))
                   , h^#(ok(X)) -> c_16(h^#(X))
                   , proper^#(h(X)) -> c_11(h^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , h^#_0(3) -> 20
                 , h^#_0(9) -> 20
                 , c_6_0(20) -> 20
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23
                 , c_16_0(20) -> 20}
      
   5) {  proper^#(f(X)) -> c_7(f^#(proper(X)))
       , f^#(ok(X)) -> c_12(f^#(X))
       , f^#(mark(X)) -> c_5(f^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(f(X)) -> c_7(f^#(proper(X)))
               , f^#(ok(X)) -> c_12(f^#(X))
               , f^#(mark(X)) -> c_5(f^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {f^#(ok(X)) -> c_12(f^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(ok(X)) -> c_12(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_7(f^#(proper(X)))}
            and weakly orienting the rules
            {f^#(ok(X)) -> c_12(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_7(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(mark(X)) -> c_5(f^#(X))}
            and weakly orienting the rules
            {  proper^#(f(X)) -> c_7(f^#(proper(X)))
             , f^#(ok(X)) -> c_12(f^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(mark(X)) -> c_5(f^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [8]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [8]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [9]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  f^#(mark(X)) -> c_5(f^#(X))
                 , proper^#(f(X)) -> c_7(f^#(proper(X)))
                 , f^#(ok(X)) -> c_12(f^#(X))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  f^#(mark(X)) -> c_5(f^#(X))
                   , proper^#(f(X)) -> c_7(f^#(proper(X)))
                   , f^#(ok(X)) -> c_12(f^#(X))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , f^#_0(3) -> 18
                 , f^#_0(9) -> 18
                 , c_5_0(18) -> 18
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23
                 , c_12_0(18) -> 18}
      
   6) {active^#(h(X)) -> c_4(h^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(f(X))) -> mark(c(f(g(f(X)))))
       , active(c(X)) -> mark(d(X))
       , active(h(X)) -> mark(c(d(X)))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , active^#(h(X)) -> c_4(h^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(h(X)) -> c_4(h^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(h(X)) -> c_4(h^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(f(X))) -> mark(c(f(g(f(X)))))
             , active(c(X)) -> mark(d(X))
             , active(h(X)) -> mark(c(d(X)))}
            and weakly orienting the rules
            {active^#(h(X)) -> c_4(h^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [5]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [4]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                 , active(c(X)) -> mark(d(X))
                 , active(h(X)) -> mark(c(d(X)))
                 , active^#(h(X)) -> c_4(h^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                   , active(c(X)) -> mark(d(X))
                   , active(h(X)) -> mark(c(d(X)))
                   , active^#(h(X)) -> c_4(h^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , h^#_0(3) -> 20
                 , h^#_0(9) -> 20}
      
   7) {active^#(f(X)) -> c_3(f^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(f(f(X))) -> mark(c(f(g(f(X)))))
       , active(c(X)) -> mark(d(X))
       , active(h(X)) -> mark(c(d(X)))
       , active(f(X)) -> f(active(X))
       , active(h(X)) -> h(active(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))
               , active(f(X)) -> f(active(X))
               , active(h(X)) -> h(active(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , active^#(f(X)) -> c_3(f^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(X)) -> c_3(f^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(X)) -> c_3(f^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(f(f(X))) -> mark(c(f(g(f(X)))))
             , active(c(X)) -> mark(d(X))
             , active(h(X)) -> mark(c(d(X)))}
            and weakly orienting the rules
            {active^#(f(X)) -> c_3(f^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(f(f(X))) -> mark(c(f(g(f(X)))))
               , active(c(X)) -> mark(d(X))
               , active(h(X)) -> mark(c(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [3]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [5]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(f(X)) -> f(active(X))
                 , active(h(X)) -> h(active(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                 , active(c(X)) -> mark(d(X))
                 , active(h(X)) -> mark(c(d(X)))
                 , active^#(f(X)) -> c_3(f^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(f(X)) -> f(active(X))
                   , active(h(X)) -> h(active(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  active(f(f(X))) -> mark(c(f(g(f(X)))))
                   , active(c(X)) -> mark(d(X))
                   , active(h(X)) -> mark(c(d(X)))
                   , active^#(f(X)) -> c_3(f^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , f^#_0(3) -> 18
                 , f^#_0(9) -> 18}
      
   8) {  proper^#(g(X)) -> c_9(g^#(proper(X)))
       , g^#(ok(X)) -> c_14(g^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(g(X)) -> c_9(g^#(proper(X)))
               , g^#(ok(X)) -> c_14(g^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_9(g^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_9(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [12]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [8]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [9]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {g^#(ok(X)) -> c_14(g^#(X))}
            and weakly orienting the rules
            {proper^#(g(X)) -> c_9(g^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {g^#(ok(X)) -> c_14(g^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [2]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [4]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [1] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  g^#(ok(X)) -> c_14(g^#(X))
                 , proper^#(g(X)) -> c_9(g^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  g^#(ok(X)) -> c_14(g^#(X))
                   , proper^#(g(X)) -> c_9(g^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23
                 , g^#_0(3) -> 27
                 , g^#_0(9) -> 27
                 , c_14_0(27) -> 27}
      
   9) {  proper^#(c(X)) -> c_8(c^#(proper(X)))
       , c^#(ok(X)) -> c_13(c^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(c(X)) -> c_8(c^#(proper(X)))
               , c^#(ok(X)) -> c_13(c^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(c(X)) -> c_8(c^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(c(X)) -> c_8(c^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [3]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(ok(X)) -> c_13(c^#(X))}
            and weakly orienting the rules
            {proper^#(c(X)) -> c_8(c^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(ok(X)) -> c_13(c^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [2]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [8]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [10]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  c^#(ok(X)) -> c_13(c^#(X))
                 , proper^#(c(X)) -> c_8(c^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  c^#(ok(X)) -> c_13(c^#(X))
                   , proper^#(c(X)) -> c_8(c^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , c^#_0(3) -> 13
                 , c^#_0(9) -> 13
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23
                 , c_13_0(13) -> 13}
      
   10)
      {  proper^#(d(X)) -> c_10(d^#(proper(X)))
       , d^#(ok(X)) -> c_15(d^#(X))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(d(X)) -> c_10(d^#(proper(X)))
               , d^#(ok(X)) -> c_15(d^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(d(X)) -> c_10(d^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(d(X)) -> c_10(d^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [8]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [12]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {d^#(ok(X)) -> c_15(d^#(X))}
            and weakly orienting the rules
            {proper^#(d(X)) -> c_10(d^#(proper(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d^#(ok(X)) -> c_15(d^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [12]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [12]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [3]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [1]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules:
                {  d^#(ok(X)) -> c_15(d^#(X))
                 , proper^#(d(X)) -> c_10(d^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules:
                  {  d^#(ok(X)) -> c_15(d^#(X))
                   , proper^#(d(X)) -> c_10(d^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , d^#_0(3) -> 15
                 , d^#_0(9) -> 15
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23
                 , c_15_0(15) -> 15}
      
   11)
      {proper^#(c(X)) -> c_8(c^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(c(X)) -> c_8(c^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(c(X)) -> c_8(c^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(c(X)) -> c_8(c^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules: {proper^#(c(X)) -> c_8(c^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules: {proper^#(c(X)) -> c_8(c^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , c^#_0(3) -> 13
                 , c^#_0(9) -> 13
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23}
      
   12)
      {proper^#(d(X)) -> c_10(d^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(d(X)) -> c_10(d^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(d(X)) -> c_10(d^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(d(X)) -> c_10(d^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules: {proper^#(d(X)) -> c_10(d^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules: {proper^#(d(X)) -> c_10(d^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , d^#_0(3) -> 15
                 , d^#_0(9) -> 15
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23}
      
   13)
      {proper^#(f(X)) -> c_7(f^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(f(X)) -> c_7(f^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(f(X)) -> c_7(f^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(f(X)) -> c_7(f^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules: {proper^#(f(X)) -> c_7(f^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules: {proper^#(f(X)) -> c_7(f^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , f^#_0(3) -> 18
                 , f^#_0(9) -> 18
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23}
      
   14)
      {proper^#(h(X)) -> c_11(h^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(h(X)) -> c_11(h^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(h(X)) -> c_11(h^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(h(X)) -> c_11(h^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules: {proper^#(h(X)) -> c_11(h^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules: {proper^#(h(X)) -> c_11(h^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , h^#_0(3) -> 20
                 , h^#_0(9) -> 20
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23}
      
   15)
      {proper^#(g(X)) -> c_9(g^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(f(X)) -> f(proper(X))
       , proper(c(X)) -> c(proper(X))
       , proper(g(X)) -> g(proper(X))
       , proper(d(X)) -> d(proper(X))
       , proper(h(X)) -> h(proper(X))
       , f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))
       , d(ok(X)) -> ok(d(X))
       , h(mark(X)) -> mark(h(X))
       , c(ok(X)) -> ok(c(X))
       , h(ok(X)) -> ok(h(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(f(X)) -> f(proper(X))
               , proper(c(X)) -> c(proper(X))
               , proper(g(X)) -> g(proper(X))
               , proper(d(X)) -> d(proper(X))
               , proper(h(X)) -> h(proper(X))
               , f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , d(ok(X)) -> ok(d(X))
               , h(mark(X)) -> mark(h(X))
               , c(ok(X)) -> ok(c(X))
               , h(ok(X)) -> ok(h(X))
               , proper^#(g(X)) -> c_9(g^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(g(X)) -> c_9(g^#(proper(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(g(X)) -> c_9(g^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [4]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [1] x1 + [0]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  g^#(x1) = [1] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(f(X)) -> f(proper(X))
                 , proper(c(X)) -> c(proper(X))
                 , proper(g(X)) -> g(proper(X))
                 , proper(d(X)) -> d(proper(X))
                 , proper(h(X)) -> h(proper(X))
                 , f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))
                 , d(ok(X)) -> ok(d(X))
                 , h(mark(X)) -> mark(h(X))
                 , c(ok(X)) -> ok(c(X))
                 , h(ok(X)) -> ok(h(X))}
              Weak Rules: {proper^#(g(X)) -> c_9(g^#(proper(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(f(X)) -> f(proper(X))
                   , proper(c(X)) -> c(proper(X))
                   , proper(g(X)) -> g(proper(X))
                   , proper(d(X)) -> d(proper(X))
                   , proper(h(X)) -> h(proper(X))
                   , f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))
                   , d(ok(X)) -> ok(d(X))
                   , h(mark(X)) -> mark(h(X))
                   , c(ok(X)) -> ok(c(X))
                   , h(ok(X)) -> ok(h(X))}
                Weak Rules: {proper^#(g(X)) -> c_9(g^#(proper(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , proper^#_0(3) -> 23
                 , proper^#_0(9) -> 23
                 , g^#_0(3) -> 27
                 , g^#_0(9) -> 27}
      
   16)
      {  active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))
       , c^#(ok(X)) -> c_13(c^#(X))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))
               , c^#(ok(X)) -> c_13(c^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  d(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [8]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(ok(X)) -> c_13(c^#(X))}
            and weakly orienting the rules
            {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(ok(X)) -> c_13(c^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  g(x1) = [1] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [12]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules:
                {  c^#(ok(X)) -> c_13(c^#(X))
                 , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules:
                  {  c^#(ok(X)) -> c_13(c^#(X))
                   , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , c^#_0(3) -> 13
                 , c^#_0(9) -> 13
                 , c_13_0(13) -> 13}
      
   17)
      {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
      
      The usable rules for this path are the following:
      {  f(mark(X)) -> mark(f(X))
       , f(ok(X)) -> ok(f(X))
       , g(ok(X)) -> ok(g(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  f(mark(X)) -> mark(f(X))
               , f(ok(X)) -> ok(f(X))
               , g(ok(X)) -> ok(g(X))
               , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [1] x1 + [1]
                  mark(x1) = [1] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  g(x1) = [1] x1 + [1]
                  d(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  f(mark(X)) -> mark(f(X))
                 , f(ok(X)) -> ok(f(X))
                 , g(ok(X)) -> ok(g(X))}
              Weak Rules: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  f(mark(X)) -> mark(f(X))
                   , f(ok(X)) -> ok(f(X))
                   , g(ok(X)) -> ok(g(X))}
                Weak Rules: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , c^#_0(3) -> 13
                 , c^#_0(9) -> 13}
      
   18)
      {  active^#(h(X)) -> c_2(c^#(d(X)))
       , c^#(ok(X)) -> c_13(c^#(X))}
      
      The usable rules for this path are the following:
      {d(ok(X)) -> ok(d(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(ok(X)) -> ok(d(X))
               , active^#(h(X)) -> c_2(c^#(d(X)))
               , c^#(ok(X)) -> c_13(c^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(h(X)) -> c_2(c^#(d(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(h(X)) -> c_2(c^#(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [1] x1 + [1]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [8]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {c^#(ok(X)) -> c_13(c^#(X))}
            and weakly orienting the rules
            {active^#(h(X)) -> c_2(c^#(d(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {c^#(ok(X)) -> c_13(c^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [1] x1 + [1]
                  h(x1) = [1] x1 + [4]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [12]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [4]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [1] x1 + [1]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {d(ok(X)) -> ok(d(X))}
              Weak Rules:
                {  c^#(ok(X)) -> c_13(c^#(X))
                 , active^#(h(X)) -> c_2(c^#(d(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {d(ok(X)) -> ok(d(X))}
                Weak Rules:
                  {  c^#(ok(X)) -> c_13(c^#(X))
                   , active^#(h(X)) -> c_2(c^#(d(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  ok_0(9) -> 9
                 , active^#_0(9) -> 11
                 , c^#_0(9) -> 13
                 , c_13_0(13) -> 13}
      
   19)
      {active^#(h(X)) -> c_2(c^#(d(X)))}
      
      The usable rules for this path are the following:
      {d(ok(X)) -> ok(d(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  d(ok(X)) -> ok(d(X))
               , active^#(h(X)) -> c_2(c^#(d(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(h(X)) -> c_2(c^#(d(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(h(X)) -> c_2(c^#(d(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [0] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [1] x1 + [1]
                  h(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  d^#(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules: {d(ok(X)) -> ok(d(X))}
              Weak Rules: {active^#(h(X)) -> c_2(c^#(d(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules: {d(ok(X)) -> ok(d(X))}
                Weak Rules: {active^#(h(X)) -> c_2(c^#(d(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , c^#_0(2) -> 1}
      
   20)
      {  active^#(c(X)) -> c_1(d^#(X))
       , d^#(ok(X)) -> c_15(d^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {d^#(ok(X)) -> c_15(d^#(X))}
            Weak Rules: {active^#(c(X)) -> c_1(d^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {d^#(ok(X)) -> c_15(d^#(X))}
            and weakly orienting the rules
            {active^#(c(X)) -> c_1(d^#(X))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {d^#(ok(X)) -> c_15(d^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [1]
                  d^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [1] x1 + [3]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  d^#(ok(X)) -> c_15(d^#(X))
                 , active^#(c(X)) -> c_1(d^#(X))}
            
            Details:         
              The given problem does not contain any strict rules
      
   21)
      {active^#(c(X)) -> c_1(d^#(X))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           f(x1) = [0] x1 + [0]
           mark(x1) = [0] x1 + [0]
           c(x1) = [0] x1 + [0]
           g(x1) = [0] x1 + [0]
           d(x1) = [0] x1 + [0]
           h(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           c^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           d^#(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           h^#(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           g^#(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14(x1) = [0] x1 + [0]
           c_15(x1) = [0] x1 + [0]
           c_16(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(c(X)) -> c_1(d^#(X))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(c(X)) -> c_1(d^#(X))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(c(X)) -> c_1(d^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  f(x1) = [0] x1 + [0]
                  mark(x1) = [0] x1 + [0]
                  c(x1) = [1] x1 + [0]
                  g(x1) = [0] x1 + [0]
                  d(x1) = [0] x1 + [0]
                  h(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  c^#(x1) = [0] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  d^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_4(x1) = [0] x1 + [0]
                  h^#(x1) = [0] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  g^#(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14(x1) = [0] x1 + [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(c(X)) -> c_1(d^#(X))}
            
            Details:         
              The given problem does not contain any strict rules