'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(ok(X)) -> ok(h(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(f(f(X))) -> c_0(c^#(f(g(f(X))))) , active^#(c(X)) -> c_1(d^#(X)) , active^#(h(X)) -> c_2(c^#(d(X))) , active^#(f(X)) -> c_3(f^#(active(X))) , active^#(h(X)) -> c_4(h^#(active(X))) , f^#(mark(X)) -> c_5(f^#(X)) , h^#(mark(X)) -> c_6(h^#(X)) , proper^#(f(X)) -> c_7(f^#(proper(X))) , proper^#(c(X)) -> c_8(c^#(proper(X))) , proper^#(g(X)) -> c_9(g^#(proper(X))) , proper^#(d(X)) -> c_10(d^#(proper(X))) , proper^#(h(X)) -> c_11(h^#(proper(X))) , f^#(ok(X)) -> c_12(f^#(X)) , c^#(ok(X)) -> c_13(c^#(X)) , g^#(ok(X)) -> c_14(g^#(X)) , d^#(ok(X)) -> c_15(d^#(X)) , h^#(ok(X)) -> c_16(h^#(X)) , top^#(mark(X)) -> c_17(top^#(proper(X))) , top^#(ok(X)) -> c_18(top^#(active(X)))} The usable rules are: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} The estimated dependency graph contains the following edges: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} ==> {c^#(ok(X)) -> c_13(c^#(X))} {active^#(c(X)) -> c_1(d^#(X))} ==> {d^#(ok(X)) -> c_15(d^#(X))} {active^#(h(X)) -> c_2(c^#(d(X)))} ==> {c^#(ok(X)) -> c_13(c^#(X))} {active^#(f(X)) -> c_3(f^#(active(X)))} ==> {f^#(ok(X)) -> c_12(f^#(X))} {active^#(f(X)) -> c_3(f^#(active(X)))} ==> {f^#(mark(X)) -> c_5(f^#(X))} {active^#(h(X)) -> c_4(h^#(active(X)))} ==> {h^#(ok(X)) -> c_16(h^#(X))} {active^#(h(X)) -> c_4(h^#(active(X)))} ==> {h^#(mark(X)) -> c_6(h^#(X))} {f^#(mark(X)) -> c_5(f^#(X))} ==> {f^#(ok(X)) -> c_12(f^#(X))} {f^#(mark(X)) -> c_5(f^#(X))} ==> {f^#(mark(X)) -> c_5(f^#(X))} {h^#(mark(X)) -> c_6(h^#(X))} ==> {h^#(ok(X)) -> c_16(h^#(X))} {h^#(mark(X)) -> c_6(h^#(X))} ==> {h^#(mark(X)) -> c_6(h^#(X))} {proper^#(f(X)) -> c_7(f^#(proper(X)))} ==> {f^#(ok(X)) -> c_12(f^#(X))} {proper^#(f(X)) -> c_7(f^#(proper(X)))} ==> {f^#(mark(X)) -> c_5(f^#(X))} {proper^#(c(X)) -> c_8(c^#(proper(X)))} ==> {c^#(ok(X)) -> c_13(c^#(X))} {proper^#(g(X)) -> c_9(g^#(proper(X)))} ==> {g^#(ok(X)) -> c_14(g^#(X))} {proper^#(d(X)) -> c_10(d^#(proper(X)))} ==> {d^#(ok(X)) -> c_15(d^#(X))} {proper^#(h(X)) -> c_11(h^#(proper(X)))} ==> {h^#(ok(X)) -> c_16(h^#(X))} {proper^#(h(X)) -> c_11(h^#(proper(X)))} ==> {h^#(mark(X)) -> c_6(h^#(X))} {f^#(ok(X)) -> c_12(f^#(X))} ==> {f^#(ok(X)) -> c_12(f^#(X))} {f^#(ok(X)) -> c_12(f^#(X))} ==> {f^#(mark(X)) -> c_5(f^#(X))} {c^#(ok(X)) -> c_13(c^#(X))} ==> {c^#(ok(X)) -> c_13(c^#(X))} {g^#(ok(X)) -> c_14(g^#(X))} ==> {g^#(ok(X)) -> c_14(g^#(X))} {d^#(ok(X)) -> c_15(d^#(X))} ==> {d^#(ok(X)) -> c_15(d^#(X))} {h^#(ok(X)) -> c_16(h^#(X))} ==> {h^#(ok(X)) -> c_16(h^#(X))} {h^#(ok(X)) -> c_16(h^#(X))} ==> {h^#(mark(X)) -> c_6(h^#(X))} {top^#(mark(X)) -> c_17(top^#(proper(X)))} ==> {top^#(ok(X)) -> c_18(top^#(active(X)))} {top^#(mark(X)) -> c_17(top^#(proper(X)))} ==> {top^#(mark(X)) -> c_17(top^#(proper(X)))} {top^#(ok(X)) -> c_18(top^#(active(X)))} ==> {top^#(ok(X)) -> c_18(top^#(active(X)))} {top^#(ok(X)) -> c_18(top^#(active(X)))} ==> {top^#(mark(X)) -> c_17(top^#(proper(X)))} We consider the following path(s): 1) { active^#(f(X)) -> c_3(f^#(active(X))) , f^#(ok(X)) -> c_12(f^#(X)) , f^#(mark(X)) -> c_5(f^#(X))} The usable rules for this path are the following: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(ok(X)) -> c_12(f^#(X)) , f^#(mark(X)) -> c_5(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(mark(X)) -> c_5(f^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(X)) -> c_5(f^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_3(f^#(active(X)))} and weakly orienting the rules {f^#(mark(X)) -> c_5(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_3(f^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_12(f^#(X))} and weakly orienting the rules { active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_5(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_12(f^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [13] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [2] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(h(X)) -> mark(c(d(X)))} and weakly orienting the rules { f^#(ok(X)) -> c_12(f^#(X)) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_5(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(h(X)) -> mark(c(d(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [8] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X))} and weakly orienting the rules { active(h(X)) -> mark(c(d(X))) , f^#(ok(X)) -> c_12(f^#(X)) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_5(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] f^#(x1) = [1] x1 + [1] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , f^#(ok(X)) -> c_12(f^#(X)) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_5(f^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , f^#(ok(X)) -> c_12(f^#(X)) , active^#(f(X)) -> c_3(f^#(active(X))) , f^#(mark(X)) -> c_5(f^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , f^#_0(3) -> 18 , f^#_0(9) -> 18 , c_5_0(18) -> 18 , c_12_0(18) -> 18} 2) { active^#(h(X)) -> c_4(h^#(active(X))) , h^#(ok(X)) -> c_16(h^#(X)) , h^#(mark(X)) -> c_6(h^#(X))} The usable rules for this path are the following: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , active^#(h(X)) -> c_4(h^#(active(X))) , h^#(ok(X)) -> c_16(h^#(X)) , h^#(mark(X)) -> c_6(h^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {h^#(mark(X)) -> c_6(h^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(mark(X)) -> c_6(h^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] h^#(x1) = [1] x1 + [3] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(h(X)) -> c_4(h^#(active(X)))} and weakly orienting the rules {h^#(mark(X)) -> c_6(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(h(X)) -> c_4(h^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(ok(X)) -> c_16(h^#(X))} and weakly orienting the rules { active^#(h(X)) -> c_4(h^#(active(X))) , h^#(mark(X)) -> c_6(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(ok(X)) -> c_16(h^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [2] h^#(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(h(X)) -> mark(c(d(X)))} and weakly orienting the rules { h^#(ok(X)) -> c_16(h^#(X)) , active^#(h(X)) -> c_4(h^#(active(X))) , h^#(mark(X)) -> c_6(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(h(X)) -> mark(c(d(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [8] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] h^#(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X))} and weakly orienting the rules { active(h(X)) -> mark(c(d(X))) , h^#(ok(X)) -> c_16(h^#(X)) , active^#(h(X)) -> c_4(h^#(active(X))) , h^#(mark(X)) -> c_6(h^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] h^#(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , h^#(ok(X)) -> c_16(h^#(X)) , active^#(h(X)) -> c_4(h^#(active(X))) , h^#(mark(X)) -> c_6(h^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , h^#(ok(X)) -> c_16(h^#(X)) , active^#(h(X)) -> c_4(h^#(active(X))) , h^#(mark(X)) -> c_6(h^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , h^#_0(2) -> 1 , c_6_0(1) -> 1 , c_16_0(1) -> 1} 3) { top^#(mark(X)) -> c_17(top^#(proper(X))) , top^#(ok(X)) -> c_18(top^#(active(X)))} The usable rules for this path are the following: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , top^#(mark(X)) -> c_17(top^#(proper(X))) , top^#(ok(X)) -> c_18(top^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {top^#(ok(X)) -> c_18(top^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(ok(X)) -> c_18(top^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [14] c_17(x1) = [1] x1 + [0] c_18(x1) = [1] x1 + [2] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X)))} and weakly orienting the rules {top^#(ok(X)) -> c_18(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_17(x1) = [1] x1 + [2] c_18(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {top^#(mark(X)) -> c_17(top^#(proper(X)))} and weakly orienting the rules { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , top^#(ok(X)) -> c_18(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(mark(X)) -> c_17(top^#(proper(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [4] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [3] c_17(x1) = [1] x1 + [0] c_18(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { top^#(mark(X)) -> c_17(top^#(proper(X))) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , top^#(ok(X)) -> c_18(top^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { top^#(mark(X)) -> c_17(top^#(proper(X))) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , top^#(ok(X)) -> c_18(top^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { active_0(3) -> 39 , active_0(9) -> 39 , mark_0(3) -> 3 , mark_0(9) -> 3 , proper_0(3) -> 37 , proper_0(9) -> 37 , ok_0(3) -> 9 , ok_0(9) -> 9 , top^#_0(3) -> 35 , top^#_0(9) -> 35 , top^#_0(37) -> 36 , top^#_0(39) -> 38 , c_17_0(36) -> 35 , c_18_0(38) -> 35} 4) { proper^#(h(X)) -> c_11(h^#(proper(X))) , h^#(ok(X)) -> c_16(h^#(X)) , h^#(mark(X)) -> c_6(h^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(h(X)) -> c_11(h^#(proper(X))) , h^#(ok(X)) -> c_16(h^#(X)) , h^#(mark(X)) -> c_6(h^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(h(X)) -> c_11(h^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [8] proper^#(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [2] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(ok(X)) -> c_16(h^#(X))} and weakly orienting the rules {proper^#(h(X)) -> c_11(h^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(ok(X)) -> c_16(h^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [4] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [9] proper^#(x1) = [1] x1 + [13] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {h^#(mark(X)) -> c_6(h^#(X))} and weakly orienting the rules { h^#(ok(X)) -> c_16(h^#(X)) , proper^#(h(X)) -> c_11(h^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {h^#(mark(X)) -> c_6(h^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [8] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [4] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { h^#(mark(X)) -> c_6(h^#(X)) , h^#(ok(X)) -> c_16(h^#(X)) , proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { h^#(mark(X)) -> c_6(h^#(X)) , h^#(ok(X)) -> c_16(h^#(X)) , proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , h^#_0(3) -> 20 , h^#_0(9) -> 20 , c_6_0(20) -> 20 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23 , c_16_0(20) -> 20} 5) { proper^#(f(X)) -> c_7(f^#(proper(X))) , f^#(ok(X)) -> c_12(f^#(X)) , f^#(mark(X)) -> c_5(f^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(f(X)) -> c_7(f^#(proper(X))) , f^#(ok(X)) -> c_12(f^#(X)) , f^#(mark(X)) -> c_5(f^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {f^#(ok(X)) -> c_12(f^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(ok(X)) -> c_12(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_7(f^#(proper(X)))} and weakly orienting the rules {f^#(ok(X)) -> c_12(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_7(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {f^#(mark(X)) -> c_5(f^#(X))} and weakly orienting the rules { proper^#(f(X)) -> c_7(f^#(proper(X))) , f^#(ok(X)) -> c_12(f^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {f^#(mark(X)) -> c_5(f^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [8] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [8] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [9] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { f^#(mark(X)) -> c_5(f^#(X)) , proper^#(f(X)) -> c_7(f^#(proper(X))) , f^#(ok(X)) -> c_12(f^#(X))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { f^#(mark(X)) -> c_5(f^#(X)) , proper^#(f(X)) -> c_7(f^#(proper(X))) , f^#(ok(X)) -> c_12(f^#(X))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , f^#_0(3) -> 18 , f^#_0(9) -> 18 , c_5_0(18) -> 18 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23 , c_12_0(18) -> 18} 6) {active^#(h(X)) -> c_4(h^#(active(X)))} The usable rules for this path are the following: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , active^#(h(X)) -> c_4(h^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(h(X)) -> c_4(h^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(h(X)) -> c_4(h^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X)))} and weakly orienting the rules {active^#(h(X)) -> c_4(h^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [5] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [4] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active^#(h(X)) -> c_4(h^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active^#(h(X)) -> c_4(h^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , h^#_0(3) -> 20 , h^#_0(9) -> 20} 7) {active^#(f(X)) -> c_3(f^#(active(X)))} The usable rules for this path are the following: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , active^#(f(X)) -> c_3(f^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(X)) -> c_3(f^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(X)) -> c_3(f^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X)))} and weakly orienting the rules {active^#(f(X)) -> c_3(f^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [3] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [5] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active^#(f(X)) -> c_3(f^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active^#(f(X)) -> c_3(f^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , f^#_0(3) -> 18 , f^#_0(9) -> 18} 8) { proper^#(g(X)) -> c_9(g^#(proper(X))) , g^#(ok(X)) -> c_14(g^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(g(X)) -> c_9(g^#(proper(X))) , g^#(ok(X)) -> c_14(g^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_9(g^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [12] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [8] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [9] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {g^#(ok(X)) -> c_14(g^#(X))} and weakly orienting the rules {proper^#(g(X)) -> c_9(g^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {g^#(ok(X)) -> c_14(g^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [2] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [8] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [4] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [1] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { g^#(ok(X)) -> c_14(g^#(X)) , proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { g^#(ok(X)) -> c_14(g^#(X)) , proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23 , g^#_0(3) -> 27 , g^#_0(9) -> 27 , c_14_0(27) -> 27} 9) { proper^#(c(X)) -> c_8(c^#(proper(X))) , c^#(ok(X)) -> c_13(c^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(c(X)) -> c_8(c^#(proper(X))) , c^#(ok(X)) -> c_13(c^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(c(X)) -> c_8(c^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [3] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(ok(X)) -> c_13(c^#(X))} and weakly orienting the rules {proper^#(c(X)) -> c_8(c^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(ok(X)) -> c_13(c^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [2] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [8] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [10] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { c^#(ok(X)) -> c_13(c^#(X)) , proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { c^#(ok(X)) -> c_13(c^#(X)) , proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , c^#_0(3) -> 13 , c^#_0(9) -> 13 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23 , c_13_0(13) -> 13} 10) { proper^#(d(X)) -> c_10(d^#(proper(X))) , d^#(ok(X)) -> c_15(d^#(X))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(d(X)) -> c_10(d^#(proper(X))) , d^#(ok(X)) -> c_15(d^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(d(X)) -> c_10(d^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [8] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [12] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {d^#(ok(X)) -> c_15(d^#(X))} and weakly orienting the rules {proper^#(d(X)) -> c_10(d^#(proper(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d^#(ok(X)) -> c_15(d^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [12] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [12] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [3] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [1] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { d^#(ok(X)) -> c_15(d^#(X)) , proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: { d^#(ok(X)) -> c_15(d^#(X)) , proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , d^#_0(3) -> 15 , d^#_0(9) -> 15 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23 , c_15_0(15) -> 15} 11) {proper^#(c(X)) -> c_8(c^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(c(X)) -> c_8(c^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(c(X)) -> c_8(c^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , c^#_0(3) -> 13 , c^#_0(9) -> 13 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23} 12) {proper^#(d(X)) -> c_10(d^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(d(X)) -> c_10(d^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(d(X)) -> c_10(d^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , d^#_0(3) -> 15 , d^#_0(9) -> 15 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23} 13) {proper^#(f(X)) -> c_7(f^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(f(X)) -> c_7(f^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(f(X)) -> c_7(f^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(f(X)) -> c_7(f^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [4] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [1] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [1] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(f(X)) -> c_7(f^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(f(X)) -> c_7(f^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , f^#_0(3) -> 18 , f^#_0(9) -> 18 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23} 14) {proper^#(h(X)) -> c_11(h^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(h(X)) -> c_11(h^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(h(X)) -> c_11(h^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , h^#_0(3) -> 20 , h^#_0(9) -> 20 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23} 15) {proper^#(g(X)) -> c_9(g^#(proper(X)))} The usable rules for this path are the following: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) , proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(g(X)) -> c_9(g^#(proper(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [4] c(x1) = [1] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] g^#(x1) = [1] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X))} Weak Rules: {proper^#(g(X)) -> c_9(g^#(proper(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , proper^#_0(3) -> 23 , proper^#_0(9) -> 23 , g^#_0(3) -> 27 , g^#_0(9) -> 27} 16) { active^#(f(f(X))) -> c_0(c^#(f(g(f(X))))) , c^#(ok(X)) -> c_13(c^#(X))} The usable rules for this path are the following: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , active^#(f(f(X))) -> c_0(c^#(f(g(f(X))))) , c^#(ok(X)) -> c_13(c^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [1] x1 + [1] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [8] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(ok(X)) -> c_13(c^#(X))} and weakly orienting the rules {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(ok(X)) -> c_13(c^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [1] x1 + [0] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [12] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { c^#(ok(X)) -> c_13(c^#(X)) , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: { c^#(ok(X)) -> c_13(c^#(X)) , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , c^#_0(3) -> 13 , c^#_0(9) -> 13 , c_13_0(13) -> 13} 17) {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} The usable rules for this path are the following: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [1] x1 + [1] mark(x1) = [1] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [1] x1 + [1] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X))} Weak Rules: {active^#(f(f(X))) -> c_0(c^#(f(g(f(X)))))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , c^#_0(3) -> 13 , c^#_0(9) -> 13} 18) { active^#(h(X)) -> c_2(c^#(d(X))) , c^#(ok(X)) -> c_13(c^#(X))} The usable rules for this path are the following: {d(ok(X)) -> ok(d(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(ok(X)) -> ok(d(X)) , active^#(h(X)) -> c_2(c^#(d(X))) , c^#(ok(X)) -> c_13(c^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(h(X)) -> c_2(c^#(d(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(h(X)) -> c_2(c^#(d(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [8] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {c^#(ok(X)) -> c_13(c^#(X))} and weakly orienting the rules {active^#(h(X)) -> c_2(c^#(d(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {c^#(ok(X)) -> c_13(c^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [1] x1 + [1] h(x1) = [1] x1 + [4] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [15] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [12] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [4] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [1] x1 + [1] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {d(ok(X)) -> ok(d(X))} Weak Rules: { c^#(ok(X)) -> c_13(c^#(X)) , active^#(h(X)) -> c_2(c^#(d(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {d(ok(X)) -> ok(d(X))} Weak Rules: { c^#(ok(X)) -> c_13(c^#(X)) , active^#(h(X)) -> c_2(c^#(d(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { ok_0(9) -> 9 , active^#_0(9) -> 11 , c^#_0(9) -> 13 , c_13_0(13) -> 13} 19) {active^#(h(X)) -> c_2(c^#(d(X)))} The usable rules for this path are the following: {d(ok(X)) -> ok(d(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { d(ok(X)) -> ok(d(X)) , active^#(h(X)) -> c_2(c^#(d(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(h(X)) -> c_2(c^#(d(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(h(X)) -> c_2(c^#(d(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [1] x1 + [1] h(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] c^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {d(ok(X)) -> ok(d(X))} Weak Rules: {active^#(h(X)) -> c_2(c^#(d(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: {d(ok(X)) -> ok(d(X))} Weak Rules: {active^#(h(X)) -> c_2(c^#(d(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { ok_0(2) -> 2 , active^#_0(2) -> 1 , c^#_0(2) -> 1} 20) { active^#(c(X)) -> c_1(d^#(X)) , d^#(ok(X)) -> c_15(d^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {d^#(ok(X)) -> c_15(d^#(X))} Weak Rules: {active^#(c(X)) -> c_1(d^#(X))} Details: We apply the weight gap principle, strictly orienting the rules {d^#(ok(X)) -> c_15(d^#(X))} and weakly orienting the rules {active^#(c(X)) -> c_1(d^#(X))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {d^#(ok(X)) -> c_15(d^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [1] d^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [1] x1 + [3] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { d^#(ok(X)) -> c_15(d^#(X)) , active^#(c(X)) -> c_1(d^#(X))} Details: The given problem does not contain any strict rules 21) {active^#(c(X)) -> c_1(d^#(X))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [0] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] d^#(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(c(X)) -> c_1(d^#(X))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(c(X)) -> c_1(d^#(X))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(c(X)) -> c_1(d^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] f(x1) = [0] x1 + [0] mark(x1) = [0] x1 + [0] c(x1) = [1] x1 + [0] g(x1) = [0] x1 + [0] d(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] c^#(x1) = [0] x1 + [0] c_1(x1) = [1] x1 + [0] d^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] f^#(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] h^#(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] c_8(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] g^#(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14(x1) = [0] x1 + [0] c_15(x1) = [0] x1 + [0] c_16(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(c(X)) -> c_1(d^#(X))} Details: The given problem does not contain any strict rules